Properties

Label 126400cn
Number of curves $1$
Conductor $126400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 126400cn1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 126400cn do not have complex multiplication.

Modular form 126400.2.a.cn

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2 q^{9} + q^{11} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 126400cn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
126400.bb1 126400cn1 \([0, -1, 0, -333, -5213]\) \(-32768/79\) \(-9875000000\) \([]\) \(46080\) \(0.60589\) \(\Gamma_0(N)\)-optimal