Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-1816578x-942537797\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-1816578xz^2-942537797z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2354284467x-43967980591794\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(29538433/3136, 157970670523/175616)$ | $13.913293843116577834677616543$ | $\infty$ |
| $(-3113/4, 3109/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 12615 \) | = | $3 \cdot 5 \cdot 29^{2}$ |
|
| Discriminant: | $\Delta$ | = | $240903445005$ | = | $3^{4} \cdot 5 \cdot 29^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{1114544804970241}{405} \) | = | $3^{-4} \cdot 5^{-1} \cdot 103681^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9745175234703385355652716405$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.29086960847710152197363562432$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0735374703334082$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.808861360699467$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $13.913293843116577834677616543$ |
|
| Real period: | $\Omega$ | ≈ | $0.13004272779888010964383883714$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.2372907361049746857006078008 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.237290736 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.130043 \cdot 13.913294 \cdot 16}{2^2} \\ & \approx 7.237290736\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 100352 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $29$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.48.0.121 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 13920 = 2^{5} \cdot 3 \cdot 5 \cdot 29 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 2263 & 986 \\ 2262 & 1451 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 5221 & 12992 \\ 4756 & 12993 \end{array}\right),\left(\begin{array}{rr} 6352 & 10585 \\ 1943 & 9426 \end{array}\right),\left(\begin{array}{rr} 4319 & 0 \\ 0 & 13919 \end{array}\right),\left(\begin{array}{rr} 4351 & 12992 \\ 870 & 1 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 11358 & 11915 \end{array}\right),\left(\begin{array}{rr} 13889 & 32 \\ 13888 & 33 \end{array}\right)$.
The torsion field $K:=\Q(E[13920])$ is a degree-$8046143078400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/13920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 4205 = 5 \cdot 29^{2} \) |
| $3$ | split multiplicative | $4$ | \( 4205 = 5 \cdot 29^{2} \) |
| $5$ | split multiplicative | $6$ | \( 2523 = 3 \cdot 29^{2} \) |
| $29$ | additive | $422$ | \( 15 = 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 12615.f
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15.a1, its twist by $29$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-145}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-29}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-29})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{-29})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{10}, \sqrt{-29})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.4.2829124000000.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.724255744000000.14 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.28970229760000.62 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | split | split | ss | ord | ord | ord | ord | ss | add | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 2 | 2 | 2 | 1,1 | 1 | 1 | 1 | 1 | 1,1 | - | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 3 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | - | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.