Show commands for:
SageMath
sage: E = EllipticCurve("12615.f1")
sage: E.isogeny_class()
Elliptic curves in class 12615.f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
12615.f1 | 12615f7 | [1, 0, 1, -1816578, -942537797] | [2] | 100352 | |
12615.f2 | 12615f5 | [1, 0, 1, -113553, -14729777] | [2, 2] | 50176 | |
12615.f3 | 12615f8 | [1, 0, 1, -92528, -20347657] | [2] | 100352 | |
12615.f4 | 12615f4 | [1, 0, 1, -67298, 6714041] | [2] | 25088 | |
12615.f5 | 12615f3 | [1, 0, 1, -8428, -138427] | [2, 2] | 25088 | |
12615.f6 | 12615f2 | [1, 0, 1, -4223, 103781] | [2, 2] | 12544 | |
12615.f7 | 12615f1 | [1, 0, 1, -18, 4543] | [2] | 6272 | \(\Gamma_0(N)\)-optimal |
12615.f8 | 12615f6 | [1, 0, 1, 29417, -1031569] | [2] | 50176 |
Rank
sage: E.rank()
The elliptic curves in class 12615.f have rank \(1\).
Modular form 12615.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.