Show commands: SageMath
Rank
The elliptic curves in class 12600.z have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 12600.z do not have complex multiplication.Modular form 12600.2.a.z
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 12600.z
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 12600.z1 | 12600bv3 | \([0, 0, 0, -102675, -12649250]\) | \(10262905636/13125\) | \(153090000000000\) | \([2]\) | \(49152\) | \(1.6297\) | |
| 12600.z2 | 12600bv4 | \([0, 0, 0, -75675, 7951750]\) | \(4108974916/36015\) | \(420078960000000\) | \([2]\) | \(49152\) | \(1.6297\) | |
| 12600.z3 | 12600bv2 | \([0, 0, 0, -8175, -80750]\) | \(20720464/11025\) | \(32148900000000\) | \([2, 2]\) | \(24576\) | \(1.2832\) | |
| 12600.z4 | 12600bv1 | \([0, 0, 0, 1950, -9875]\) | \(4499456/2835\) | \(-516678750000\) | \([2]\) | \(12288\) | \(0.93659\) | \(\Gamma_0(N)\)-optimal |