Properties

Label 12506a
Number of curves $2$
Conductor $12506$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12506a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(13\)\(1\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12506a do not have complex multiplication.

Modular form 12506.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 4 q^{7} - q^{8} - 3 q^{9} - q^{10} + 3 q^{11} + 4 q^{14} + q^{16} - 4 q^{17} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 12506a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12506.c1 12506a1 \([1, -1, 0, -9116314, 10596695526]\) \(-607782291676209/74\) \(-10201528396826\) \([]\) \(227136\) \(2.3591\) \(\Gamma_0(N)\)-optimal
12506.c2 12506a2 \([1, -1, 0, 18302246, 54487812276]\) \(4918167786495951/12151280273024\) \(-1675157172473593598581376\) \([]\) \(1589952\) \(3.3320\)