Properties

Label 124722.i
Number of curves $2$
Conductor $124722$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 124722.i have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(13\)\(1\)
\(41\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 124722.i do not have complex multiplication.

Modular form 124722.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{5} - 2 q^{7} - q^{8} + 2 q^{10} + 4 q^{11} + 2 q^{14} + q^{16} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 124722.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
124722.i1 124722k1 \([1, -1, 0, -690376608, 6982130119680]\) \(10341755683137709164937/356992303104\) \(1256164439272220934144\) \([2]\) \(29030400\) \(3.5462\) \(\Gamma_0(N)\)-optimal
124722.i2 124722k2 \([1, -1, 0, -689403168, 7002800728704]\) \(-10298071306410575356297/60769798505543808\) \(-213833349348609398312181888\) \([2]\) \(58060800\) \(3.8927\)