Properties

Label 124215db
Number of curves $1$
Conductor $124215$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("db1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 124215db1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 124215db do not have complex multiplication.

Modular form 124215.2.a.db

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + q^{9} - 2 q^{10} + q^{11} + 2 q^{12} + q^{15} - 4 q^{16} + q^{17} - 2 q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 124215db

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
124215.j1 124215db1 \([0, 1, 1, -1576150, -782613464]\) \(-762549907456/24024195\) \(-13642601645537131995\) \([]\) \(4656960\) \(2.4480\) \(\Gamma_0(N)\)-optimal