Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+471865244762x+27359097153028565\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+471865244762xz^2+27359097153028565z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+611537357211525x+1276464202159629094038\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(143125121/25, 1724323893016/125)$ | $9.8190888112424469907357665074$ | $\infty$ |
$(-230305/4, 230305/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 123981 \) | = | $3 \cdot 11 \cdot 13 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-7047456421391421944711018618960825553$ | = | $-1 \cdot 3^{30} \cdot 11^{2} \cdot 13^{4} \cdot 17^{13} $ |
|
j-invariant: | $j$ | = | \( \frac{481375691534989591168533139109375}{291970430882721534414299079537} \) | = | $3^{-30} \cdot 5^{6} \cdot 11^{-2} \cdot 13^{-4} \cdot 17^{-7} \cdot 3134883287^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $5.7597031483194638813367531333$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $4.3430964762913558412119858244$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0885939830875333$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.866166136530725$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $9.8190888112424469907357665074$ |
|
Real period: | $\Omega$ | ≈ | $0.0045867487162540741973352326394$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 480 $ = $ ( 2 \cdot 3 \cdot 5 )\cdot2\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.4045231599701244649282155128 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.404523160 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.004587 \cdot 9.819089 \cdot 480}{2^2} \\ & \approx 5.404523160\end{aligned}$$
Modular invariants
Modular form 123981.2.a.i
For more coefficients, see the Downloads section to the right.
Modular degree: | 1703116800 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $30$ | $I_{30}$ | split multiplicative | -1 | 1 | 30 | 30 |
$11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$17$ | $2$ | $I_{7}^{*}$ | additive | 1 | 2 | 13 | 7 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2244 = 2^{2} \cdot 3 \cdot 11 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 409 & 4 \\ 818 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 749 & 4 \\ 1498 & 9 \end{array}\right),\left(\begin{array}{rr} 2114 & 1 \\ 1187 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 2241 & 4 \\ 2240 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1684 & 565 \\ 561 & 1684 \end{array}\right)$.
The torsion field $K:=\Q(E[2244])$ is a degree-$397069516800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2244\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 289 = 17^{2} \) |
$3$ | split multiplicative | $4$ | \( 41327 = 11 \cdot 13 \cdot 17^{2} \) |
$5$ | good | $2$ | \( 41327 = 11 \cdot 13 \cdot 17^{2} \) |
$11$ | nonsplit multiplicative | $12$ | \( 11271 = 3 \cdot 13 \cdot 17^{2} \) |
$13$ | split multiplicative | $14$ | \( 9537 = 3 \cdot 11 \cdot 17^{2} \) |
$17$ | additive | $162$ | \( 429 = 3 \cdot 11 \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 123981o
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 7293b2, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.74052.2 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.25356622807296.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | split | ss | ss | nonsplit | split | add | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 9 | 4 | 1,1 | 1,1 | 1 | 2 | - | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 1 | 0 | 0,0 | 0,0 | 0 | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.