Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
7293.a2 |
7293b2 |
7293.a |
7293b |
$2$ |
$2$ |
\( 3 \cdot 11 \cdot 13 \cdot 17 \) |
\( - 3^{30} \cdot 11^{2} \cdot 13^{4} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$29.44964126$ |
$1$ |
|
$0$ |
$5913600$ |
$4.343094$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$8.46059$ |
$[1, 1, 1, 1632751712, 5569387382402]$ |
\(y^2+xy+y=x^3+x^2+1632751712x+5569387382402\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[(38265409929178/13647, 241054466078032812002/13647)]$ |
21879.k2 |
21879j2 |
21879.k |
21879j |
$2$ |
$2$ |
\( 3^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 3^{36} \cdot 11^{2} \cdot 13^{4} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$47308800$ |
$4.892403$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$8.19009$ |
$[1, -1, 0, 14694765408, -150358764559451]$ |
\(y^2+xy=x^3-x^2+14694765408x-150358764559451\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[ ]$ |
80223.k2 |
80223g2 |
80223.k |
80223g |
$2$ |
$2$ |
\( 3 \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 3^{30} \cdot 11^{8} \cdot 13^{4} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$35.65836775$ |
$1$ |
|
$0$ |
$709632000$ |
$5.542046$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$7.93811$ |
$[1, 1, 0, 197562957150, -7411866791191551]$ |
\(y^2+xy=x^3+x^2+197562957150x-7411866791191551\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[(16058930279327464165/1421956, 64442717579463471147720487693/1421956)]$ |
94809.q2 |
94809d2 |
94809.q |
94809d |
$2$ |
$2$ |
\( 3 \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 3^{30} \cdot 11^{2} \cdot 13^{10} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$205.9633156$ |
$1$ |
|
$0$ |
$993484800$ |
$5.625572$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$7.90985$ |
$[1, 1, 0, 275935039325, 12234564403940962]$ |
\(y^2+xy=x^3+x^2+275935039325x+12234564403940962\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[(2481884143398988047574643641393925060224925664202770747090556540677942818260324598420331898/1849611593772232038231080402677284352548243, 4875490931195460976701076758918863758245874275045785908116811893094736667987518617438262418012380931551174587470090170680432419862531208/1849611593772232038231080402677284352548243)]$ |
116688.x2 |
116688w2 |
116688.x |
116688w |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{30} \cdot 11^{2} \cdot 13^{4} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$378470400$ |
$5.036247$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$7.16295$ |
$[0, 1, 0, 26124027392, -356388544418956]$ |
\(y^2=x^3+x^2+26124027392x-356388544418956\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[ ]$ |
123981.i2 |
123981o2 |
123981.i |
123981o |
$2$ |
$2$ |
\( 3 \cdot 11 \cdot 13 \cdot 17^{2} \) |
\( - 3^{30} \cdot 11^{2} \cdot 13^{4} \cdot 17^{13} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$9.819088811$ |
$1$ |
|
$0$ |
$1703116800$ |
$5.759705$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$7.86617$ |
$[1, 0, 0, 471865244762, 27359097153028565]$ |
\(y^2+xy=x^3+471865244762x+27359097153028565\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[(143125121/5, 1724323893016/5)]$ |
182325.by2 |
182325br2 |
182325.by |
182325br |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 3^{30} \cdot 5^{6} \cdot 11^{2} \cdot 13^{4} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$851558400$ |
$5.147812$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$7.00958$ |
$[1, 0, 1, 40818792799, 696091785214673]$ |
\(y^2+xy+y=x^3+40818792799x+696091785214673\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[ ]$ |
240669.m2 |
240669m2 |
240669.m |
240669m |
$2$ |
$2$ |
\( 3^{2} \cdot 11^{2} \cdot 13 \cdot 17 \) |
\( - 3^{36} \cdot 11^{8} \cdot 13^{4} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$120.4430957$ |
$1$ |
|
$0$ |
$5677056000$ |
$6.091347$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$7.76627$ |
$[1, -1, 1, 1778066614345, 200122181428786224]$ |
\(y^2+xy+y=x^3-x^2+1778066614345x+200122181428786224\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[(10666935553985326043726266490872846674465813021665742587/4063735351555014315509867, 85344259095819798688791414689247182541075532020262871672630185923726973443163693311/4063735351555014315509867)]$ |
284427.l2 |
284427l2 |
284427.l |
284427l |
$2$ |
$2$ |
\( 3^{2} \cdot 11 \cdot 13^{2} \cdot 17 \) |
\( - 3^{36} \cdot 11^{2} \cdot 13^{10} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$7947878400$ |
$6.174881$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$7.74278$ |
$[1, -1, 1, 2483415353920, -330330755491052052]$ |
\(y^2+xy+y=x^3-x^2+2483415353920x-330330755491052052\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[ ]$ |
350064.bg2 |
350064bg2 |
350064.bg |
350064bg |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{36} \cdot 11^{2} \cdot 13^{4} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3027763200$ |
$5.585548$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$7.06287$ |
$[0, 0, 0, 235116246525, 9622725815558338]$ |
\(y^2=x^3+235116246525x+9622725815558338\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[ ]$ |
357357.j2 |
357357j2 |
357357.j |
357357j |
$2$ |
$2$ |
\( 3 \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \) |
\( - 3^{30} \cdot 7^{6} \cdot 11^{2} \cdot 13^{4} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$0.756236728$ |
$1$ |
|
$4$ |
$2270822400$ |
$5.316055$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$6.79856$ |
$[1, 0, 0, 80004833887, -1910059857662286]$ |
\(y^2+xy=x^3+80004833887x-1910059857662286\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[(374539, 283705378)]$ |
371943.bf2 |
371943bf2 |
371943.bf |
371943bf |
$2$ |
$2$ |
\( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) |
\( - 3^{36} \cdot 11^{2} \cdot 13^{4} \cdot 17^{13} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$13624934400$ |
$6.309006$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$7.70633$ |
$[1, -1, 0, 4246787202858, -738695623131771255]$ |
\(y^2+xy=x^3-x^2+4246787202858x-738695623131771255\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[ ]$ |
466752.bl2 |
466752bl2 |
466752.bl |
466752bl |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{18} \cdot 3^{30} \cdot 11^{2} \cdot 13^{4} \cdot 17^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$261.3023949$ |
$1$ |
|
$1$ |
$3027763200$ |
$5.382820$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$6.72084$ |
$[0, -1, 0, 104496109567, -2851212851461215]$ |
\(y^2=x^3-x^2+104496109567x-2851212851461215\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[(7628017791321915252897679146758495630881079186751274913447550844310077555505304090969640395746541010510007046328551/1313944389000545035914599301504915139331027067159271655, 21123681599408353507703457244087266225670560083914434236751568382478129673070352300491210402695367903196134340216942248770770818007611395710007886801655057208057061296062624/1313944389000545035914599301504915139331027067159271655)]$ |
466752.dh2 |
466752dh2 |
466752.dh |
466752dh |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \) |
\( - 2^{18} \cdot 3^{30} \cdot 11^{2} \cdot 13^{4} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2244$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$3027763200$ |
$5.382820$ |
$481375691534989591168533139109375/291970430882721534414299079537$ |
$1.08859$ |
$6.72084$ |
$[0, 1, 0, 104496109567, 2851212851461215]$ |
\(y^2=x^3+x^2+104496109567x+2851212851461215\) |
2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? |
$[ ]$ |