Learn more

Refine search


Results (14 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
7293.a2 7293.a \( 3 \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $29.44964126$ $[1, 1, 1, 1632751712, 5569387382402]$ \(y^2+xy+y=x^3+x^2+1632751712x+5569387382402\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[(38265409929178/13647, 241054466078032812002/13647)]$
21879.k2 21879.k \( 3^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 14694765408, -150358764559451]$ \(y^2+xy=x^3-x^2+14694765408x-150358764559451\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[ ]$
80223.k2 80223.k \( 3 \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $35.65836775$ $[1, 1, 0, 197562957150, -7411866791191551]$ \(y^2+xy=x^3+x^2+197562957150x-7411866791191551\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[(16058930279327464165/1421956, 64442717579463471147720487693/1421956)]$
94809.q2 94809.q \( 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $205.9633156$ $[1, 1, 0, 275935039325, 12234564403940962]$ \(y^2+xy=x^3+x^2+275935039325x+12234564403940962\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[(2481884143398988047574643641393925060224925664202770747090556540677942818260324598420331898/1849611593772232038231080402677284352548243, 4875490931195460976701076758918863758245874275045785908116811893094736667987518617438262418012380931551174587470090170680432419862531208/1849611593772232038231080402677284352548243)]$
116688.x2 116688.x \( 2^{4} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 26124027392, -356388544418956]$ \(y^2=x^3+x^2+26124027392x-356388544418956\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[ ]$
123981.i2 123981.i \( 3 \cdot 11 \cdot 13 \cdot 17^{2} \) $1$ $\Z/2\Z$ $9.819088811$ $[1, 0, 0, 471865244762, 27359097153028565]$ \(y^2+xy=x^3+471865244762x+27359097153028565\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[(143125121/5, 1724323893016/5)]$
182325.by2 182325.by \( 3 \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 40818792799, 696091785214673]$ \(y^2+xy+y=x^3+40818792799x+696091785214673\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[ ]$
240669.m2 240669.m \( 3^{2} \cdot 11^{2} \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $120.4430957$ $[1, -1, 1, 1778066614345, 200122181428786224]$ \(y^2+xy+y=x^3-x^2+1778066614345x+200122181428786224\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[(10666935553985326043726266490872846674465813021665742587/4063735351555014315509867, 85344259095819798688791414689247182541075532020262871672630185923726973443163693311/4063735351555014315509867)]$
284427.l2 284427.l \( 3^{2} \cdot 11 \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 2483415353920, -330330755491052052]$ \(y^2+xy+y=x^3-x^2+2483415353920x-330330755491052052\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[ ]$
350064.bg2 350064.bg \( 2^{4} \cdot 3^{2} \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 235116246525, 9622725815558338]$ \(y^2=x^3+235116246525x+9622725815558338\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[ ]$
357357.j2 357357.j \( 3 \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $0.756236728$ $[1, 0, 0, 80004833887, -1910059857662286]$ \(y^2+xy=x^3+80004833887x-1910059857662286\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[(374539, 283705378)]$
371943.bf2 371943.bf \( 3^{2} \cdot 11 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 4246787202858, -738695623131771255]$ \(y^2+xy=x^3-x^2+4246787202858x-738695623131771255\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[ ]$
466752.bl2 466752.bl \( 2^{6} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \) $1$ $\Z/2\Z$ $261.3023949$ $[0, -1, 0, 104496109567, -2851212851461215]$ \(y^2=x^3-x^2+104496109567x-2851212851461215\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[(7628017791321915252897679146758495630881079186751274913447550844310077555505304090969640395746541010510007046328551/1313944389000545035914599301504915139331027067159271655, 21123681599408353507703457244087266225670560083914434236751568382478129673070352300491210402695367903196134340216942248770770818007611395710007886801655057208057061296062624/1313944389000545035914599301504915139331027067159271655)]$
466752.dh2 466752.dh \( 2^{6} \cdot 3 \cdot 11 \cdot 13 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 104496109567, 2851212851461215]$ \(y^2=x^3+x^2+104496109567x+2851212851461215\) 2.3.0.a.1, 68.6.0.a.1, 132.6.0.?, 2244.12.0.? $[ ]$
  displayed columns for results