Properties

Label 123840.e
Number of curves $4$
Conductor $123840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 123840.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 123840.e do not have complex multiplication.

Modular form 123840.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{7} - 6 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 123840.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
123840.e1 123840ez4 \([0, 0, 0, -9353388, 11010151888]\) \(947094050118111698/20769216075\) \(1984529500559769600\) \([2]\) \(5242880\) \(2.6267\)  
123840.e2 123840ez2 \([0, 0, 0, -605388, 159132688]\) \(513591322675396/68238500625\) \(3260145136803840000\) \([2, 2]\) \(2621440\) \(2.2801\)  
123840.e3 123840ez1 \([0, 0, 0, -155388, -21047312]\) \(34739908901584/4081640625\) \(48750854400000000\) \([2]\) \(1310720\) \(1.9336\) \(\Gamma_0(N)\)-optimal
123840.e4 123840ez3 \([0, 0, 0, 942612, 839633488]\) \(969360123836302/3748293231075\) \(-358154995689544089600\) \([2]\) \(5242880\) \(2.6267\)