Properties

Label 123200.cr
Number of curves $2$
Conductor $123200$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 123200.cr have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 123200.cr do not have complex multiplication.

Modular form 123200.2.a.cr

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 3 q^{9} - q^{11} - 6 q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 123200.cr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
123200.cr1 123200ec2 \([0, 0, 0, -35500, -702000]\) \(2415899250/1294139\) \(2650396672000000\) \([2]\) \(442368\) \(1.6507\)  
123200.cr2 123200ec1 \([0, 0, 0, 8500, -86000]\) \(66325500/41503\) \(-42499072000000\) \([2]\) \(221184\) \(1.3041\) \(\Gamma_0(N)\)-optimal