Properties

Label 122304cg
Number of curves $1$
Conductor $122304$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 122304cg1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 122304cg do not have complex multiplication.

Modular form 122304.2.a.cg

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} + q^{9} + q^{11} + q^{13} + 3 q^{15} + 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 122304cg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
122304.m1 122304cg1 \([0, -1, 0, 383, 2689]\) \(68921/78\) \(-7013400576\) \([]\) \(61440\) \(0.57569\) \(\Gamma_0(N)\)-optimal