Show commands: SageMath
Rank
The elliptic curves in class 121968cc have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 121968cc do not have complex multiplication.Modular form 121968.2.a.cc
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 121968cc
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 121968.bq2 | 121968cc1 | \([0, 0, 0, 4168329, -3472374026]\) | \(24226243449392/29774625727\) | \(-9843961706338262646528\) | \([2]\) | \(5529600\) | \(2.9062\) | \(\Gamma_0(N)\)-optimal |
| 121968.bq1 | 121968cc2 | \([0, 0, 0, -24820851, -33383409950]\) | \(1278763167594532/375974556419\) | \(497212515096700767243264\) | \([2]\) | \(11059200\) | \(3.2528\) |