Properties

Label 121968cc
Number of curves $2$
Conductor $121968$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 121968cc have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 121968cc do not have complex multiplication.

Modular form 121968.2.a.cc

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + q^{7} + 4 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 121968cc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
121968.bq2 121968cc1 \([0, 0, 0, 4168329, -3472374026]\) \(24226243449392/29774625727\) \(-9843961706338262646528\) \([2]\) \(5529600\) \(2.9062\) \(\Gamma_0(N)\)-optimal
121968.bq1 121968cc2 \([0, 0, 0, -24820851, -33383409950]\) \(1278763167594532/375974556419\) \(497212515096700767243264\) \([2]\) \(11059200\) \(3.2528\)