Properties

Label 121680.l
Number of curves $1$
Conductor $121680$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 121680.l1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 121680.l do not have complex multiplication.

Modular form 121680.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{7} - q^{11} - q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 121680.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
121680.l1 121680w1 \([0, 0, 0, -3783, 89557]\) \(3037375744/25\) \(49280400\) \([]\) \(69120\) \(0.64644\) \(\Gamma_0(N)\)-optimal