Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-122187x+16479866\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-122187xz^2+16479866z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-122187x+16479866\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(637, 14040)$ | $0.12569548320739661814617997822$ | $\infty$ |
| $(793/4, 1755/8)$ | $1.2930341198356499148792421208$ | $\infty$ |
Integral points
\((-403,\pm 520)\), \((-329,\pm 4590)\), \((-65,\pm 4914)\), \((-38,\pm 4590)\), \((157,\pm 1080)\), \((182,\pm 520)\), \((205,\pm 216)\), \((221,\pm 520)\), \((247,\pm 1170)\), \((367,\pm 4590)\), \((637,\pm 14040)\), \((1690,\pm 68094)\), \((3757,\pm 229320)\), \((124007,\pm 43668430)\)
Invariants
| Conductor: | $N$ | = | \( 121680 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-575658150912000$ | = | $-1 \cdot 2^{13} \cdot 3^{9} \cdot 5^{3} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( -\frac{2365581049}{6750} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-3} \cdot 5^{-3} \cdot 13^{2} \cdot 241^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7038450816352160035692856952$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.39359136241262973023006485858$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9704956863834545$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9933253679453147$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.15890224010776265565877844883$ |
|
| Real period: | $\Omega$ | ≈ | $0.51885961941566911694623915160$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 144 $ = $ 2^{2}\cdot2^{2}\cdot3\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $11.872505639031984616883752606 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.872505639 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.518860 \cdot 0.158902 \cdot 144}{1^2} \\ & \approx 11.872505639\end{aligned}$$
Modular invariants
Modular form 121680.2.a.dr
For more coefficients, see the Downloads section to the right.
| Modular degree: | 580608 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{5}^{*}$ | additive | -1 | 4 | 13 | 1 |
| $3$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $13$ | $3$ | $IV$ | additive | 1 | 2 | 4 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 97 & 6 \\ 51 & 19 \end{array}\right),\left(\begin{array}{rr} 61 & 6 \\ 63 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 89 & 114 \\ 0 & 119 \end{array}\right),\left(\begin{array}{rr} 115 & 6 \\ 114 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 114 & 119 \\ 77 & 66 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$2211840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \) |
| $3$ | additive | $2$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
| $5$ | split multiplicative | $6$ | \( 24336 = 2^{4} \cdot 3^{2} \cdot 13^{2} \) |
| $13$ | additive | $62$ | \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 121680.dr
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 5070.j1, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.20280.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.49353408000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.65804544.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.2.19741363200.5 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.543227238282745208953077026261041152.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.41032704632900600249450496000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | split | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 5 | 4 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.