Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5070.j1 |
5070i1 |
5070.j |
5070i |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{3} \cdot 13^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$3024$ |
$0.461392$ |
$-2365581049/6750$ |
$0.97050$ |
$3.73328$ |
$[1, 0, 1, -849, 9466]$ |
\(y^2+xy+y=x^3-849x+9466\) |
3.8.0-3.a.1.2, 120.16.0.? |
$[ ]$ |
5070.v1 |
5070u1 |
5070.v |
5070u |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{3} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$39312$ |
$1.743866$ |
$-2365581049/6750$ |
$0.97050$ |
$5.53724$ |
$[1, 0, 0, -143400, 20940750]$ |
\(y^2+xy=x^3-143400x+20940750\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 120.8.0.?, 1560.16.0.? |
$[ ]$ |
15210.e1 |
15210j1 |
15210.e |
15210j |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2 \cdot 3^{9} \cdot 5^{3} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$314496$ |
$2.293171$ |
$-2365581049/6750$ |
$0.97050$ |
$5.59003$ |
$[1, -1, 0, -1290600, -565400250]$ |
\(y^2+xy=x^3-x^2-1290600x-565400250\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 120.8.0.?, 1560.16.0.? |
$[ ]$ |
15210.br1 |
15210bp1 |
15210.br |
15210bp |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2 \cdot 3^{9} \cdot 5^{3} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$24192$ |
$1.010698$ |
$-2365581049/6750$ |
$0.97050$ |
$3.99188$ |
$[1, -1, 1, -7637, -255589]$ |
\(y^2+xy+y=x^3-x^2-7637x-255589\) |
3.8.0-3.a.1.1, 120.16.0.? |
$[ ]$ |
25350.s1 |
25350d1 |
25350.s |
25350d |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{9} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$3.865096205$ |
$1$ |
|
$2$ |
$943488$ |
$2.548584$ |
$-2365581049/6750$ |
$0.97050$ |
$5.61068$ |
$[1, 1, 0, -3585000, 2617593750]$ |
\(y^2+xy=x^3+x^2-3585000x+2617593750\) |
3.4.0.a.1, 120.8.0.?, 195.8.0.?, 312.8.0.?, 1560.16.0.? |
$[(875, 11875)]$ |
25350.cb1 |
25350bz1 |
25350.cb |
25350bz |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{9} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$72576$ |
$1.266111$ |
$-2365581049/6750$ |
$0.97050$ |
$4.09304$ |
$[1, 1, 1, -21213, 1183281]$ |
\(y^2+xy+y=x^3+x^2-21213x+1183281\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 24.8.0-3.a.1.5, 120.16.0.? |
$[ ]$ |
40560.f1 |
40560bj1 |
40560.f |
40560bj |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{3} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$72576$ |
$1.154539$ |
$-2365581049/6750$ |
$0.97050$ |
$3.78555$ |
$[0, -1, 0, -13576, -605840]$ |
\(y^2=x^3-x^2-13576x-605840\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 120.16.0.? |
$[ ]$ |
40560.bb1 |
40560bs1 |
40560.bb |
40560bs |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{3} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$8.045549628$ |
$1$ |
|
$2$ |
$943488$ |
$2.437012$ |
$-2365581049/6750$ |
$0.97050$ |
$5.23597$ |
$[0, -1, 0, -2294400, -1340208000]$ |
\(y^2=x^3-x^2-2294400x-1340208000\) |
3.4.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? |
$[(42520, 8762040)]$ |
76050.z1 |
76050bn1 |
76050.z |
76050bn |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{9} \cdot 5^{9} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$580608$ |
$1.815416$ |
$-2365581049/6750$ |
$0.97050$ |
$4.27944$ |
$[1, -1, 0, -190917, -32139509]$ |
\(y^2+xy=x^3-x^2-190917x-32139509\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 24.8.0-3.a.1.6, 120.16.0.? |
$[ ]$ |
76050.fk1 |
76050el1 |
76050.fk |
76050el |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{9} \cdot 5^{9} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$43.76893255$ |
$1$ |
|
$0$ |
$7547904$ |
$3.097893$ |
$-2365581049/6750$ |
$0.97050$ |
$5.64874$ |
$[1, -1, 1, -32265005, -70707296253]$ |
\(y^2+xy+y=x^3-x^2-32265005x-70707296253\) |
3.4.0.a.1, 120.8.0.?, 195.8.0.?, 312.8.0.?, 1560.16.0.? |
$[(258621810374509118309/165759476, 3065692170559276105875685237095/165759476)]$ |
121680.cc1 |
121680do1 |
121680.cc |
121680do |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{3} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$6.785586506$ |
$1$ |
|
$0$ |
$7547904$ |
$2.986320$ |
$-2365581049/6750$ |
$0.97050$ |
$5.30766$ |
$[0, 0, 0, -20649603, 36206265602]$ |
\(y^2=x^3-20649603x+36206265602\) |
3.4.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? |
$[(11281/2, 160191/2)]$ |
121680.dr1 |
121680ey1 |
121680.dr |
121680ey |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{3} \cdot 13^{4} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$0.158902240$ |
$1$ |
|
$28$ |
$580608$ |
$1.703846$ |
$-2365581049/6750$ |
$0.97050$ |
$3.99333$ |
$[0, 0, 0, -122187, 16479866]$ |
\(y^2=x^3-122187x+16479866\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 120.16.0.? |
$[(637, 14040), (793/2, 1755/2)]$ |
162240.j1 |
162240hs1 |
162240.j |
162240hs |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{3} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$6.033479441$ |
$1$ |
|
$2$ |
$7547904$ |
$2.783588$ |
$-2365581049/6750$ |
$0.97050$ |
$4.97759$ |
$[0, -1, 0, -9177601, 10730841601]$ |
\(y^2=x^3-x^2-9177601x+10730841601\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 390.8.0.?, 1560.16.0.? |
$[(-1695, 146336)]$ |
162240.ds1 |
162240hh1 |
162240.ds |
162240hh |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{3} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$580608$ |
$1.501112$ |
$-2365581049/6750$ |
$0.97050$ |
$3.69478$ |
$[0, -1, 0, -54305, 4901025]$ |
\(y^2=x^3-x^2-54305x+4901025\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 30.8.0-3.a.1.2, 120.16.0.? |
$[ ]$ |
162240.fw1 |
162240bt1 |
162240.fw |
162240bt |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{3} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$19.71297238$ |
$1$ |
|
$0$ |
$7547904$ |
$2.783588$ |
$-2365581049/6750$ |
$0.97050$ |
$4.97759$ |
$[0, 1, 0, -9177601, -10730841601]$ |
\(y^2=x^3+x^2-9177601x-10730841601\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[(3153835495/421, 174364342431072/421)]$ |
162240.gs1 |
162240e1 |
162240.gs |
162240e |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{3} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$580608$ |
$1.501112$ |
$-2365581049/6750$ |
$0.97050$ |
$3.69478$ |
$[0, 1, 0, -54305, -4901025]$ |
\(y^2=x^3+x^2-54305x-4901025\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 60.8.0-3.a.1.3, 120.16.0.? |
$[ ]$ |
202800.gn1 |
202800bt1 |
202800.gn |
202800bt |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{9} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$10.87281260$ |
$1$ |
|
$0$ |
$22643712$ |
$3.241734$ |
$-2365581049/6750$ |
$0.97050$ |
$5.33660$ |
$[0, 1, 0, -57360008, -167640720012]$ |
\(y^2=x^3+x^2-57360008x-167640720012\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[(1553497/8, 1827664125/8)]$ |
202800.ji1 |
202800cs1 |
202800.ji |
202800cs |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{9} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$4.710048922$ |
$1$ |
|
$2$ |
$1741824$ |
$1.959257$ |
$-2365581049/6750$ |
$0.97050$ |
$4.07721$ |
$[0, 1, 0, -339408, -76408812]$ |
\(y^2=x^3+x^2-339408x-76408812\) |
3.4.0.a.1, 24.8.0-3.a.1.7, 60.8.0-3.a.1.2, 120.16.0.? |
$[(762, 10392)]$ |
248430.br1 |
248430br1 |
248430.br |
248430br |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{3} \cdot 7^{6} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$3.412782892$ |
$1$ |
|
$2$ |
$1088640$ |
$1.434347$ |
$-2365581049/6750$ |
$0.97050$ |
$3.50356$ |
$[1, 1, 0, -41577, -3288501]$ |
\(y^2+xy=x^3+x^2-41577x-3288501\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 120.8.0.?, 840.16.0.? |
$[(503, 9916)]$ |
248430.gi1 |
248430gi1 |
248430.gi |
248430gi |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{3} \cdot 7^{6} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$111.2610210$ |
$1$ |
|
$0$ |
$14152320$ |
$2.716820$ |
$-2365581049/6750$ |
$0.97050$ |
$4.74238$ |
$[1, 1, 1, -7026601, -7189703851]$ |
\(y^2+xy+y=x^3+x^2-7026601x-7189703851\) |
3.4.0.a.1, 120.8.0.?, 273.8.0.?, 10920.16.0.? |
$[(14291271778658027808365985862050064573721260643851/14798773595354855698294, 53875913392201406690735168092773709691100735335079997281458579246252994595/14798773595354855698294)]$ |
486720.co1 |
486720co1 |
486720.co |
486720co |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{9} \cdot 5^{3} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$2.244343760$ |
$1$ |
|
$2$ |
$4644864$ |
$2.050419$ |
$-2365581049/6750$ |
$0.97050$ |
$3.88817$ |
$[0, 0, 0, -488748, 131838928]$ |
\(y^2=x^3-488748x+131838928\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 60.8.0-3.a.1.4, 120.16.0.? |
$[(458, 2016)]$ |
486720.fx1 |
486720fx1 |
486720.fx |
486720fx |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{9} \cdot 5^{3} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4644864$ |
$2.050419$ |
$-2365581049/6750$ |
$0.97050$ |
$3.88817$ |
$[0, 0, 0, -488748, -131838928]$ |
\(y^2=x^3-488748x-131838928\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 30.8.0-3.a.1.1, 120.16.0.? |
$[ ]$ |
486720.kx1 |
486720kx1 |
486720.kx |
486720kx |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{9} \cdot 5^{3} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$12.46116412$ |
$1$ |
|
$0$ |
$60383232$ |
$3.332893$ |
$-2365581049/6750$ |
$0.97050$ |
$5.06337$ |
$[0, 0, 0, -82598412, -289650124816]$ |
\(y^2=x^3-82598412x-289650124816\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 390.8.0.?, 1560.16.0.? |
$[(7545352/23, 14570156340/23)]$ |
486720.om1 |
486720om1 |
486720.om |
486720om |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{9} \cdot 5^{3} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$60383232$ |
$3.332893$ |
$-2365581049/6750$ |
$0.97050$ |
$5.06337$ |
$[0, 0, 0, -82598412, 289650124816]$ |
\(y^2=x^3-82598412x+289650124816\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[ ]$ |