Properties

Label 1210a
Number of curves $2$
Conductor $1210$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1210a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1210a do not have complex multiplication.

Modular form 1210.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} - q^{5} - 2 q^{6} - q^{8} + q^{9} + q^{10} + 2 q^{12} - 6 q^{13} - 2 q^{15} + q^{16} - 6 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 1210a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1210.g2 1210a1 \([1, 1, 0, -24928, 2245632]\) \(-726572699/512000\) \(-1207269217792000\) \([2]\) \(7920\) \(1.5939\) \(\Gamma_0(N)\)-optimal
1210.g1 1210a2 \([1, 1, 0, -450848, 116307008]\) \(4298149261979/1000000\) \(2357947691000000\) \([2]\) \(15840\) \(1.9405\)