Properties

Label 1210.i
Number of curves $1$
Conductor $1210$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1210.i1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1210.i do not have complex multiplication.

Modular form 1210.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} - 3 q^{7} + q^{8} - 2 q^{9} + q^{10} - q^{12} - 3 q^{14} - q^{15} + q^{16} - 3 q^{17} - 2 q^{18} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1210.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1210.i1 1210k1 \([1, 1, 1, -195, 1057]\) \(-616295051/64000\) \(-85184000\) \([]\) \(432\) \(0.26094\) \(\Gamma_0(N)\)-optimal