Learn more about

Refine search


Results (1-50 of 60 matches)

Next   Download to        
Curve Isogeny class
LMFDB label Cremona label LMFDB label Cremona label Weierstrass Coefficients Rank Torsion structure
1200.a1 1200n1 1200.a 1200n [0, -1, 0, -333, -2088] 1 [2]
1200.a2 1200n2 1200.a 1200n [0, -1, 0, 292, -9588] 1 [2]
1200.b1 1200c1 1200.b 1200c [0, -1, 0, 167, 37] 0 []
1200.c1 1200k2 1200.c 1200k [0, -1, 0, -3333, 77037] 0 []
1200.c2 1200k1 1200.c 1200k [0, -1, 0, 27, -243] 0 []
1200.d1 1200a5 1200.d 1200a [0, -1, 0, -9608, 365712] 1 [2]
1200.d2 1200a3 1200.d 1200a [0, -1, 0, -1608, -24288] 1 [2]
1200.d3 1200a4 1200.d 1200a [0, -1, 0, -608, 5712] 1 [2, 2]
1200.d4 1200a2 1200.d 1200a [0, -1, 0, -108, -288] 1 [2, 2]
1200.d5 1200a1 1200.d 1200a [0, -1, 0, 17, -38] 1 [2]
1200.d6 1200a6 1200.d 1200a [0, -1, 0, 392, 21712] 1 [2]
1200.e1 1200j7 1200.e 1200j [0, -1, 0, -864008, 309406512] 0 [4]
1200.e2 1200j5 1200.e 1200j [0, -1, 0, -54008, 4846512] 0 [2, 2]
1200.e3 1200j8 1200.e 1200j [0, -1, 0, -44008, 6686512] 0 [2]
1200.e4 1200j3 1200.e 1200j [0, -1, 0, -32008, -2193488] 0 [2]
1200.e5 1200j4 1200.e 1200j [0, -1, 0, -4008, 46512] 0 [2, 2]
1200.e6 1200j2 1200.e 1200j [0, -1, 0, -2008, -33488] 0 [2, 2]
1200.e7 1200j1 1200.e 1200j [0, -1, 0, -8, -1488] 0 [2]
1200.e8 1200j6 1200.e 1200j [0, -1, 0, 13992, 334512] 0 [2]
1200.f1 1200l2 1200.f 1200l [0, -1, 0, -30333, 2043537] 1 []
1200.f2 1200l1 1200.f 1200l [0, -1, 0, -333, 3537] 1 []
1200.g1 1200m4 1200.g 1200m [0, -1, 0, -13248, -580608] 1 [2]
1200.g2 1200m2 1200.g 1200m [0, -1, 0, -848, 9792] 1 [2]
1200.g3 1200m3 1200.g 1200m [0, -1, 0, -448, -17408] 1 [2]
1200.g4 1200m1 1200.g 1200m [0, -1, 0, -48, 192] 1 [2]
1200.h1 1200b2 1200.h 1200b [0, -1, 0, -4208, 66912] 0 [2]
1200.h2 1200b1 1200.h 1200b [0, -1, 0, 792, 6912] 0 [2]
1200.i1 1200d1 1200.i 1200d [0, -1, 0, -233, -1563] 0 []
1200.j1 1200h1 1200.j 1200h [0, 1, 0, -5833, -207037] 0 []
1200.k1 1200p8 1200.k 1200p [0, 1, 0, -2133408, 1198675188] 1 [4]
1200.k2 1200p7 1200.k 1200p [0, 1, 0, -181408, 3987188] 1 [2]
1200.k3 1200p6 1200.k 1200p [0, 1, 0, -133408, 18675188] 1 [2, 2]
1200.k4 1200p4 1200.k 1200p [0, 1, 0, -115408, -15128812] 1 [2]
1200.k5 1200p5 1200.k 1200p [0, 1, 0, -27408, 1495188] 1 [4]
1200.k6 1200p2 1200.k 1200p [0, 1, 0, -7408, -224812] 1 [2, 2]
1200.k7 1200p3 1200.k 1200p [0, 1, 0, -5408, 499188] 1 [2]
1200.k8 1200p1 1200.k 1200p [0, 1, 0, 592, -16812] 1 [2]
1200.l1 1200i2 1200.l 1200i [0, 1, 0, -168, 468] 1 [2]
1200.l2 1200i1 1200.l 1200i [0, 1, 0, 32, 68] 1 [2]
1200.m1 1200q4 1200.m 1200q [0, 1, 0, -331208, -73238412] 0 [2]
1200.m2 1200q2 1200.m 1200q [0, 1, 0, -21208, 1181588] 0 [2]
1200.m3 1200q3 1200.m 1200q [0, 1, 0, -11208, -2198412] 0 [2]
1200.m4 1200q1 1200.m 1200q [0, 1, 0, -1208, 21588] 0 [2]
1200.n1 1200o2 1200.n 1200o [0, 1, 0, -1213, 15863] 1 []
1200.n2 1200o1 1200.n 1200o [0, 1, 0, -13, 23] 1 []
1200.o1 1200e5 1200.o 1200e [0, 1, 0, -80008, 8683988] 0 [2]
1200.o2 1200e3 1200.o 1200e [0, 1, 0, -5008, 133988] 0 [2, 2]
1200.o3 1200e6 1200.o 1200e [0, 1, 0, -2008, 295988] 0 [2]
1200.o4 1200e2 1200.o 1200e [0, 1, 0, -508, -1012] 0 [2, 2]
1200.o5 1200e1 1200.o 1200e [0, 1, 0, -383, -3012] 0 [2]
Next   Download to