Properties

Label 1200j
Number of curves $8$
Conductor $1200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("j1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1200j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1200.e7 1200j1 \([0, -1, 0, -8, -1488]\) \(-1/15\) \(-960000000\) \([2]\) \(384\) \(0.40244\) \(\Gamma_0(N)\)-optimal
1200.e6 1200j2 \([0, -1, 0, -2008, -33488]\) \(13997521/225\) \(14400000000\) \([2, 2]\) \(768\) \(0.74901\)  
1200.e4 1200j3 \([0, -1, 0, -32008, -2193488]\) \(56667352321/15\) \(960000000\) \([2]\) \(1536\) \(1.0956\)  
1200.e5 1200j4 \([0, -1, 0, -4008, 46512]\) \(111284641/50625\) \(3240000000000\) \([2, 2]\) \(1536\) \(1.0956\)  
1200.e2 1200j5 \([0, -1, 0, -54008, 4846512]\) \(272223782641/164025\) \(10497600000000\) \([2, 2]\) \(3072\) \(1.4422\)  
1200.e8 1200j6 \([0, -1, 0, 13992, 334512]\) \(4733169839/3515625\) \(-225000000000000\) \([2]\) \(3072\) \(1.4422\)  
1200.e1 1200j7 \([0, -1, 0, -864008, 309406512]\) \(1114544804970241/405\) \(25920000000\) \([4]\) \(6144\) \(1.7887\)  
1200.e3 1200j8 \([0, -1, 0, -44008, 6686512]\) \(-147281603041/215233605\) \(-13774950720000000\) \([2]\) \(6144\) \(1.7887\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1200j have rank \(0\).

Complex multiplication

The elliptic curves in class 1200j do not have complex multiplication.

Modular form 1200.2.a.j

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 4q^{11} + 2q^{13} - 2q^{17} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 2 & 2 \\ 8 & 4 & 8 & 2 & 4 & 1 & 8 & 8 \\ 16 & 8 & 16 & 4 & 2 & 8 & 1 & 4 \\ 16 & 8 & 16 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.