Properties

Label 119646cd
Number of curves $2$
Conductor $119646$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 119646cd have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(17\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 119646cd do not have complex multiplication.

Modular form 119646.2.a.cd

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} + 2 q^{7} + q^{8} - 2 q^{10} - 6 q^{11} - 2 q^{13} + 2 q^{14} + q^{16} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 119646cd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
119646.br2 119646cd1 \([1, -1, 1, -3956, -206125]\) \(-389017/828\) \(-14569726299228\) \([2]\) \(331776\) \(1.2148\) \(\Gamma_0(N)\)-optimal
119646.br1 119646cd2 \([1, -1, 1, -81986, -9007909]\) \(3463512697/3174\) \(55850617480374\) \([2]\) \(663552\) \(1.5614\)