Show commands: SageMath
Rank
The elliptic curves in class 11830.d have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 11830.d do not have complex multiplication.Modular form 11830.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 9 & 6 & 18 \\ 2 & 1 & 6 & 18 & 3 & 9 \\ 3 & 6 & 1 & 3 & 2 & 6 \\ 9 & 18 & 3 & 1 & 6 & 2 \\ 6 & 3 & 2 & 6 & 1 & 3 \\ 18 & 9 & 6 & 2 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 11830.d
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 11830.d1 | 11830i6 | \([1, 0, 1, -89408778, -325253059402]\) | \(16375858190544687071329/9025573730468750\) | \(43564720512390136718750\) | \([2]\) | \(1741824\) | \(3.2920\) | |
| 11830.d2 | 11830i5 | \([1, 0, 1, -89396948, -325343468994]\) | \(16369358802802724130049/4976562500\) | \(24020916664062500\) | \([2]\) | \(870912\) | \(2.9454\) | |
| 11830.d3 | 11830i4 | \([1, 0, 1, -3440168, 1928275806]\) | \(932829715460155969/206949435875000\) | \(998905399626372875000\) | \([2]\) | \(580608\) | \(2.7427\) | |
| 11830.d4 | 11830i2 | \([1, 0, 1, -3230608, 2234714718]\) | \(772531501373731009/15142400\) | \(73089472601600\) | \([2]\) | \(193536\) | \(2.1934\) | |
| 11830.d5 | 11830i3 | \([1, 0, 1, -1121488, -431212962]\) | \(32318182904349889/2067798824000\) | \(9980869973872616000\) | \([2]\) | \(290304\) | \(2.3961\) | |
| 11830.d6 | 11830i1 | \([1, 0, 1, -202128, 34826846]\) | \(189208196468929/834928640\) | \(4030041073909760\) | \([2]\) | \(96768\) | \(1.8468\) | \(\Gamma_0(N)\)-optimal |