Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3-x^2-1033x+12718\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3-x^2z-1033xz^2+12718z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1339200x+577314000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-28, 137)$ | $0.30308464654371767688139634254$ | $\infty$ |
| $(22, 12)$ | $0.90151237203358813263199353864$ | $\infty$ |
Integral points
\( \left(-28, 137\right) \), \( \left(-28, -138\right) \), \( \left(-4, 129\right) \), \( \left(-4, -130\right) \), \( \left(16, 5\right) \), \( \left(16, -6\right) \), \( \left(22, 12\right) \), \( \left(22, -13\right) \), \( \left(82, 687\right) \), \( \left(82, -688\right) \), \( \left(182, 2412\right) \), \( \left(182, -2413\right) \), \( \left(698, 18408\right) \), \( \left(698, -18409\right) \)
Invariants
| Conductor: | $N$ | = | \( 11825 \) | = | $5^{2} \cdot 11 \cdot 43$ |
|
| Discriminant: | $\Delta$ | = | $4471328125$ | = | $5^{7} \cdot 11^{3} \cdot 43 $ |
|
| j-invariant: | $j$ | = | \( \frac{7809531904}{286165} \) | = | $2^{18} \cdot 5^{-1} \cdot 11^{-3} \cdot 31^{3} \cdot 43^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.62122150958190836588934970174$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.18349744663514182141102996487$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8360361904679204$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.458662604117494$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.27294916713223271588233876862$ |
|
| Real period: | $\Omega$ | ≈ | $1.3682221403623765995820657591$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2^{2}\cdot3\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $4.4814611239654980065601717268 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.481461124 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.368222 \cdot 0.272949 \cdot 12}{1^2} \\ & \approx 4.481461124\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 5184 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $5$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
| $11$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $43$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 14190 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 43 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 11826 & 2371 \\ 2365 & 4731 \end{array}\right),\left(\begin{array}{rr} 1981 & 6 \\ 5943 & 19 \end{array}\right),\left(\begin{array}{rr} 8513 & 14184 \\ 11349 & 14171 \end{array}\right),\left(\begin{array}{rr} 14185 & 6 \\ 14184 & 7 \end{array}\right),\left(\begin{array}{rr} 5161 & 6 \\ 1293 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[14190])$ is a degree-$380633831424000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/14190\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | good | $2$ | \( 1075 = 5^{2} \cdot 43 \) |
| $5$ | additive | $18$ | \( 473 = 11 \cdot 43 \) |
| $11$ | split multiplicative | $12$ | \( 1075 = 5^{2} \cdot 43 \) |
| $43$ | nonsplit multiplicative | $44$ | \( 275 = 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 11825.f
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 2365.c2, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.3.9460.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.6.211647634000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.288461334375.4 | \(\Z/3\Z\) | not in database |
| $6$ | 6.6.447458000.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.17348123606244690245268230319324913330078125.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.322044431809749032855238544360398375000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ord | add | ord | split | ord | ord | ord | ord | ord | ord | ord | ss | nonsplit | ord |
| $\lambda$-invariant(s) | 3,2 | 2 | - | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2,2 | 2 | 2 |
| $\mu$-invariant(s) | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.