Properties

Label 116160ef
Number of curves $1$
Conductor $116160$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ef1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 116160ef1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 116160ef do not have complex multiplication.

Modular form 116160.2.a.ef

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - q^{7} + q^{9} - 7 q^{13} + q^{15} + q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 116160ef

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
116160.ib1 116160ef1 \([0, 1, 0, -50145, -4336257]\) \(439632699649/300000\) \(9515827200000\) \([]\) \(460800\) \(1.4280\) \(\Gamma_0(N)\)-optimal