Show commands: SageMath
Rank
The elliptic curves in class 116160dz have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 116160dz do not have complex multiplication.Modular form 116160.2.a.dz
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 116160dz
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
116160.in3 | 116160dz1 | \([0, 1, 0, -10791425, 13641134175]\) | \(299270638153369/1069200\) | \(496540849589452800\) | \([2]\) | \(3686400\) | \(2.6135\) | \(\Gamma_0(N)\)-optimal |
116160.in2 | 116160dz2 | \([0, 1, 0, -10946305, 13229246303]\) | \(312341975961049/17862322500\) | \(8295335568453795840000\) | \([2, 2]\) | \(7372800\) | \(2.9601\) | |
116160.in4 | 116160dz3 | \([0, 1, 0, 7871615, 54000151775]\) | \(116149984977671/2779502343750\) | \(-1290812247663206400000000\) | \([2]\) | \(14745600\) | \(3.3067\) | |
116160.in1 | 116160dz4 | \([0, 1, 0, -32242305, -53900004897]\) | \(7981893677157049/1917731420550\) | \(890602309057505801011200\) | \([2]\) | \(14745600\) | \(3.3067\) |