Properties

Label 115920dl
Number of curves $2$
Conductor $115920$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 115920dl have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 115920dl do not have complex multiplication.

Modular form 115920.2.a.dl

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 2 q^{11} - 6 q^{13} - 4 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 115920dl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
115920.bh2 115920dl1 \([0, 0, 0, -43203, 1455298]\) \(2986606123201/1421952000\) \(4245925920768000\) \([2]\) \(737280\) \(1.6927\) \(\Gamma_0(N)\)-optimal
115920.bh1 115920dl2 \([0, 0, 0, -573123, 166896322]\) \(6972359126281921/5071500000\) \(15143417856000000\) \([2]\) \(1474560\) \(2.0393\)