Properties

Label 11592.r
Number of curves $1$
Conductor $11592$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 11592.r1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 11592.r do not have complex multiplication.

Modular form 11592.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{5} - q^{7} - q^{13} + 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 11592.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11592.r1 11592n1 \([0, 0, 0, -3531, 114662]\) \(-3261064466/1917027\) \(-2862105974784\) \([]\) \(19200\) \(1.0928\) \(\Gamma_0(N)\)-optimal