Properties

Label 115885o
Number of curves $2$
Conductor $115885$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 115885o have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 115885o do not have complex multiplication.

Modular form 115885.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{4} + q^{5} - 2 q^{9} + q^{11} + 2 q^{12} + q^{13} - q^{15} + 4 q^{16} - 3 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 115885o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
115885.g2 115885o1 \([0, -1, 1, -2025, -33279]\) \(7809531904/286165\) \(33667026085\) \([]\) \(77760\) \(0.78946\) \(\Gamma_0(N)\)-optimal
115885.g1 115885o2 \([0, -1, 1, -23585, 1391298]\) \(12332795428864/109322125\) \(12861638684125\) \([]\) \(233280\) \(1.3388\)