Properties

Label 115600cz
Number of curves $2$
Conductor $115600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 115600cz have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 115600cz do not have complex multiplication.

Modular form 115600.2.a.cz

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{7} - 2 q^{9} + q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 115600cz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
115600.bj1 115600cz1 \([0, -1, 0, -1678608, 839326912]\) \(-1723025/4\) \(-1214339855329280000\) \([]\) \(1566720\) \(2.3509\) \(\Gamma_0(N)\)-optimal
115600.bj2 115600cz2 \([0, -1, 0, 12077792, -13742457088]\) \(1026895/1024\) \(-194294376852684800000000\) \([]\) \(7833600\) \(3.1556\)