Properties

Label 11552h
Number of curves $4$
Conductor $11552$
CM \(\Q(\sqrt{-1}) \)
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 11552h have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 11552h has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).

Modular form 11552.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 3 q^{9} - 6 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 11552h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
11552.h3 11552h1 \([0, 0, 0, -361, 0]\) \(1728\) \(3010936384\) \([2, 2]\) \(3600\) \(0.50826\) \(\Gamma_0(N)\)-optimal \(-4\)
11552.h1 11552h2 \([0, 0, 0, -3971, -96026]\) \(287496\) \(24087491072\) \([2]\) \(7200\) \(0.85483\)   \(-16\)
11552.h2 11552h3 \([0, 0, 0, -3971, 96026]\) \(287496\) \(24087491072\) \([2]\) \(7200\) \(0.85483\)   \(-16\)
11552.h4 11552h4 \([0, 0, 0, 1444, 0]\) \(1728\) \(-192699928576\) \([2]\) \(7200\) \(0.85483\)   \(-4\)