Properties

Label 111188h
Number of curves $1$
Conductor $111188$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 111188h1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 111188h do not have complex multiplication.

Modular form 111188.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - q^{7} - 2 q^{9} + q^{11} + 4 q^{13} - q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 111188h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
111188.n1 111188h1 \([0, 1, 0, -7701, -290137]\) \(-4194304/539\) \(-6491578843904\) \([]\) \(171072\) \(1.1920\) \(\Gamma_0(N)\)-optimal