Show commands: SageMath
Rank
The elliptic curves in class 109200da have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 109200da do not have complex multiplication.Modular form 109200.2.a.da
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 109200da
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
109200.f4 | 109200da1 | \([0, -1, 0, -288017408, -952985714688]\) | \(41285728533151645510969/17760741842188800000\) | \(1136687477900083200000000000\) | \([2]\) | \(66355200\) | \(3.8879\) | \(\Gamma_0(N)\)-optimal |
109200.f2 | 109200da2 | \([0, -1, 0, -3943825408, -95287455346688]\) | \(105997782562506306791694649/51649016225625000000\) | \(3305537038440000000000000000\) | \([2, 2]\) | \(132710400\) | \(4.2344\) | |
109200.f3 | 109200da3 | \([0, -1, 0, -3286753408, -128080604722688]\) | \(-61354313914516350666047929/75227254486083984375000\) | \(-4814544287109375000000000000000\) | \([2]\) | \(265420800\) | \(4.5810\) | |
109200.f1 | 109200da4 | \([0, -1, 0, -63093825408, -6099958855346688]\) | \(434014578033107719741685694649/103121648659575000\) | \(6599785514212800000000000\) | \([2]\) | \(265420800\) | \(4.5810\) |