Properties

Label 109200c
Number of curves $1$
Conductor $109200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 109200c1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 109200c do not have complex multiplication.

Modular form 109200.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} - q^{11} - q^{13} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 109200c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
109200.m1 109200c1 \([0, -1, 0, -7288, -557993]\) \(-107040567189760/277254364023\) \(-110901745609200\) \([]\) \(290304\) \(1.3826\) \(\Gamma_0(N)\)-optimal