Show commands: SageMath
Rank
The elliptic curves in class 10890q have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 10890q do not have complex multiplication.Modular form 10890.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 10890q
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
10890.m3 | 10890q1 | \([1, -1, 0, -24525, -1240475]\) | \(1263214441/211200\) | \(272758035052800\) | \([2]\) | \(61440\) | \(1.4911\) | \(\Gamma_0(N)\)-optimal |
10890.m2 | 10890q2 | \([1, -1, 0, -111645, 13204021]\) | \(119168121961/10890000\) | \(14064086182410000\) | \([2, 2]\) | \(122880\) | \(1.8377\) | |
10890.m1 | 10890q3 | \([1, -1, 0, -1745145, 887779921]\) | \(455129268177961/4392300\) | \(5672514760238700\) | \([2]\) | \(245760\) | \(2.1842\) | |
10890.m4 | 10890q4 | \([1, -1, 0, 127935, 62030425]\) | \(179310732119/1392187500\) | \(-1797965563092187500\) | \([2]\) | \(245760\) | \(2.1842\) |