Properties

Label 108900du
Number of curves $1$
Conductor $108900$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("du1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 108900du1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 108900du do not have complex multiplication.

Modular form 108900.2.a.du

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{7} - 4 q^{13} - q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 108900du

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
108900.q1 108900du1 \([0, 0, 0, -335775, -82987850]\) \(-20261200/2673\) \(-552335020981920000\) \([]\) \(1382400\) \(2.1373\) \(\Gamma_0(N)\)-optimal