Properties

Label 10780.k
Number of curves $4$
Conductor $10780$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 10780.k have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 10780.k do not have complex multiplication.

Modular form 10780.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{5} + q^{9} - q^{11} + 4 q^{13} - 2 q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 10780.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10780.k1 10780f4 \([0, -1, 0, -347916, 79103816]\) \(154639330142416/33275\) \(1002181241600\) \([2]\) \(62208\) \(1.6874\)  
10780.k2 10780f3 \([0, -1, 0, -21821, 1232330]\) \(610462990336/8857805\) \(16673790407120\) \([2]\) \(31104\) \(1.3408\)  
10780.k3 10780f2 \([0, -1, 0, -4916, 76616]\) \(436334416/171875\) \(5176556000000\) \([2]\) \(20736\) \(1.1381\)  
10780.k4 10780f1 \([0, -1, 0, -2221, -38730]\) \(643956736/15125\) \(28471058000\) \([2]\) \(10368\) \(0.79153\) \(\Gamma_0(N)\)-optimal