Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2+70036x-488065553\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z+70036xz^2-488065553z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+1120581x-31235074794\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1459, 51407)$ | $5.3389110946279194769776256228$ | $\infty$ |
Integral points
\( \left(1459, 51407\right) \), \( \left(1459, -52867\right) \)
Invariants
| Conductor: | $N$ | = | \( 106722 \) | = | $2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-102920451920536352256$ | = | $-1 \cdot 2^{9} \cdot 3^{9} \cdot 7^{8} \cdot 11^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{189}{512} \) | = | $2^{-9} \cdot 3^{3} \cdot 7$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5189880774249910672009750145$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.80119220817881867677999919780$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.3265882735428125$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.623862049021147$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.3389110946279194769776256228$ |
|
| Real period: | $\Omega$ | ≈ | $0.087555150679163350172390487527$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 18 $ = $ 3^{2}\cdot2\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.4140849763504797273053171205 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.414084976 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.087555 \cdot 5.338911 \cdot 18}{1^2} \\ & \approx 8.414084976\end{aligned}$$
Modular invariants
Modular form 106722.2.a.ek
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4082400 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
| $3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
| $7$ | $1$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
| $11$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 9.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5544 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \), index $144$, genus $2$, and generators
$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 12 & 217 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 5050 & 5049 \\ 3267 & 496 \end{array}\right),\left(\begin{array}{rr} 13 & 12 \\ 5480 & 5485 \end{array}\right),\left(\begin{array}{rr} 2221 & 990 \\ 3762 & 769 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 3023 & 0 \\ 0 & 5543 \end{array}\right),\left(\begin{array}{rr} 5527 & 18 \\ 5526 & 19 \end{array}\right),\left(\begin{array}{rr} 4159 & 4554 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2254 & 4653 \\ 5247 & 2606 \end{array}\right)$.
The torsion field $K:=\Q(E[5544])$ is a degree-$1103619686400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5544\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 17787 = 3 \cdot 7^{2} \cdot 11^{2} \) |
| $3$ | additive | $2$ | \( 5929 = 7^{2} \cdot 11^{2} \) |
| $7$ | additive | $26$ | \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \) |
| $11$ | additive | $62$ | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 106722.ek
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 882.e2, its twist by $77$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{33}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.1176.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.33191424.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.2329687899.2 | \(\Z/3\Z\) | not in database |
| $6$ | 6.2.5522223168.11 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.20159025903499093408179884369490777.3 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.29831539266523657427977372510715904.3 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | ord | add | add | ord | ord | ord | ord | ord | ord | ord | ss | ord | ord |
| $\lambda$-invariant(s) | 2 | - | 1 | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 3 | 1 |
| $\mu$-invariant(s) | 0 | - | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.