Properties

Label 106560.dc
Number of curves $4$
Conductor $106560$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 106560.dc have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 106560.dc do not have complex multiplication.

Modular form 106560.2.a.dc

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 4 q^{7} - 4 q^{11} + 2 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 106560.dc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
106560.dc1 106560el4 \([0, 0, 0, -79788, 8355472]\) \(2351575819592/98316585\) \(2348573997957120\) \([2]\) \(589824\) \(1.7143\)  
106560.dc2 106560el2 \([0, 0, 0, -13188, -409088]\) \(84951891136/24950025\) \(74500375449600\) \([2, 2]\) \(294912\) \(1.3677\)  
106560.dc3 106560el1 \([0, 0, 0, -12063, -509888]\) \(4160851280704/624375\) \(29130840000\) \([2]\) \(147456\) \(1.0211\) \(\Gamma_0(N)\)-optimal
106560.dc4 106560el3 \([0, 0, 0, 35412, -2722448]\) \(205587930808/253011735\) \(-6043911940177920\) \([2]\) \(589824\) \(1.7143\)