Properties

Label 106470ed
Number of curves $1$
Conductor $106470$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ed1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 106470ed1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 106470ed do not have complex multiplication.

Modular form 106470.2.a.ed

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} - q^{7} + q^{8} - q^{10} + 3 q^{11} - q^{14} + q^{16} + 4 q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 106470ed

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
106470.dx1 106470ed1 \([1, -1, 1, -40163, -3184333]\) \(-58153757003329/2126250000\) \(-261956126250000\) \([]\) \(537600\) \(1.5379\) \(\Gamma_0(N)\)-optimal