Show commands: SageMath
Rank
The elliptic curves in class 106470.p have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 106470.p do not have complex multiplication.Modular form 106470.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 4 & 12 & 2 & 3 & 6 & 12 & 4 \\ 4 & 1 & 3 & 2 & 12 & 6 & 12 & 4 \\ 12 & 3 & 1 & 6 & 4 & 2 & 4 & 12 \\ 2 & 2 & 6 & 1 & 6 & 3 & 6 & 2 \\ 3 & 12 & 4 & 6 & 1 & 2 & 4 & 12 \\ 6 & 6 & 2 & 3 & 2 & 1 & 2 & 6 \\ 12 & 12 & 4 & 6 & 4 & 2 & 1 & 3 \\ 4 & 4 & 12 & 2 & 12 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 106470.p
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
106470.p1 | 106470w7 | \([1, -1, 0, -3446097030, 77852403587700]\) | \(1286229821345376481036009/247265484375000000\) | \(870063880455174234375000000\) | \([2]\) | \(111476736\) | \(4.1697\) | |
106470.p2 | 106470w8 | \([1, -1, 0, -1515765510, -22000772931084]\) | \(109454124781830273937129/3914078300576808000\) | \(13772638600220125851294888000\) | \([2]\) | \(111476736\) | \(4.1697\) | |
106470.p3 | 106470w5 | \([1, -1, 0, -1502509995, -22416452817615]\) | \(106607603143751752938169/5290068420\) | \(18614395248138127620\) | \([2]\) | \(37158912\) | \(3.6204\) | |
106470.p4 | 106470w6 | \([1, -1, 0, -238125510, 943852772916]\) | \(424378956393532177129/136231857216000000\) | \(479364997628242829376000000\) | \([2, 2]\) | \(55738368\) | \(3.8231\) | |
106470.p5 | 106470w4 | \([1, -1, 0, -104589315, -265615756119]\) | \(35958207000163259449/12145729518877500\) | \(42737709967343734848277500\) | \([2]\) | \(37158912\) | \(3.6204\) | |
106470.p6 | 106470w2 | \([1, -1, 0, -93911895, -350200141875]\) | \(26031421522845051769/5797789779600\) | \(20400936614557065075600\) | \([2, 2]\) | \(18579456\) | \(3.2738\) | |
106470.p7 | 106470w1 | \([1, -1, 0, -5207175, -6753206979]\) | \(-4437543642183289/3033210136320\) | \(-10673089242977959499520\) | \([2]\) | \(9289728\) | \(2.9273\) | \(\Gamma_0(N)\)-optimal |
106470.p8 | 106470w3 | \([1, -1, 0, 42225210, 100613877300]\) | \(2366200373628880151/2612420149248000\) | \(-9192437101277088841728000\) | \([2]\) | \(27869184\) | \(3.4766\) |