Properties

Label 1035.g
Number of curves $1$
Conductor $1035$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1035.g1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1035.g do not have complex multiplication.

Modular form 1035.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} - q^{5} - 5 q^{7} - 2 q^{10} + 2 q^{11} - 6 q^{13} - 10 q^{14} - 4 q^{16} - q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1035.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1035.g1 1035a1 \([0, 0, 1, -903, -11871]\) \(-111701610496/18862875\) \(-13751035875\) \([]\) \(1536\) \(0.67209\) \(\Gamma_0(N)\)-optimal