Properties

Label 103488em
Number of curves $2$
Conductor $103488$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("em1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 103488em have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 103488em do not have complex multiplication.

Modular form 103488.2.a.em

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{5} + q^{9} + q^{11} + 6 q^{13} + 4 q^{15} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 103488em

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
103488.ix2 103488em1 \([0, 1, 0, 2679, -74313]\) \(4410944/7623\) \(-3673449787392\) \([2]\) \(245760\) \(1.0959\) \(\Gamma_0(N)\)-optimal
103488.ix1 103488em2 \([0, 1, 0, -18881, -785793]\) \(193100552/43659\) \(168310790258688\) \([2]\) \(491520\) \(1.4425\)