Properties

Label 103488.hb
Number of curves $4$
Conductor $103488$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 103488.hb have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 103488.hb do not have complex multiplication.

Modular form 103488.2.a.hb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + q^{11} - 4 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 103488.hb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
103488.hb1 103488ds3 \([0, 1, 0, -252513, 48568575]\) \(57736239625/255552\) \(7881473981939712\) \([2]\) \(829440\) \(1.9026\)  
103488.hb2 103488ds4 \([0, 1, 0, -127073, 96963327]\) \(-7357983625/127552392\) \(-3933840701235658752\) \([2]\) \(1658880\) \(2.2492\)  
103488.hb3 103488ds1 \([0, 1, 0, -17313, -832833]\) \(18609625/1188\) \(36639083593728\) \([2]\) \(276480\) \(1.3533\) \(\Gamma_0(N)\)-optimal
103488.hb4 103488ds2 \([0, 1, 0, 14047, -3485889]\) \(9938375/176418\) \(-5440903913668608\) \([2]\) \(552960\) \(1.6999\)