Properties

Label 102410o
Number of curves $4$
Conductor $102410$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 102410o have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 102410o do not have complex multiplication.

Modular form 102410.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} + q^{5} - 2 q^{6} - q^{8} + q^{9} - q^{10} - q^{11} + 2 q^{12} - 2 q^{13} + 2 q^{15} + q^{16} - q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 102410o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
102410.z4 102410o1 \([1, 1, 0, -77347, -8311491]\) \(434985385981609/30179600\) \(3550599760400\) \([2]\) \(483840\) \(1.4617\) \(\Gamma_0(N)\)-optimal
102410.z3 102410o2 \([1, 1, 0, -82247, -7205071]\) \(523002686860009/113851032020\) \(13394460066120980\) \([2]\) \(967680\) \(1.8083\)  
102410.z2 102410o3 \([1, 1, 0, -156482, 11199476]\) \(3601910963276569/1618496000000\) \(190414435904000000\) \([2]\) \(1451520\) \(2.0110\)  
102410.z1 102410o4 \([1, 1, 0, -2116482, 1183671476]\) \(8912089320684236569/5116268168000\) \(601923833697032000\) \([2]\) \(2903040\) \(2.3576\)