Properties

Label 100800.jr
Number of curves $2$
Conductor $100800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("jr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 100800.jr have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100800.jr do not have complex multiplication.

Modular form 100800.2.a.jr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} - 4 q^{11} + 6 q^{13} + 4 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 100800.jr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100800.jr1 100800bl1 \([0, 0, 0, -73788300, -243438858000]\) \(551105805571803/1376829440\) \(111002148321361920000000\) \([2]\) \(15482880\) \(3.2994\) \(\Gamma_0(N)\)-optimal
100800.jr2 100800bl2 \([0, 0, 0, -46140300, -428072202000]\) \(-134745327251163/903920796800\) \(-72875511985825382400000000\) \([2]\) \(30965760\) \(3.6459\)