Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
150.1-b9
150.1-b
$12$
$24$
\(\Q(\sqrt{6}) \)
$2$
$[2, 0]$
150.1
\( 2 \cdot 3 \cdot 5^{2} \)
\( 2^{12} \cdot 3^{4} \cdot 5^{12} \)
$1.53203$
$(-a+2), (a+3), (-a-1), (-a+1)$
0
$\Z/2\Z\oplus\Z/12\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$2, 3$
2Cs , 3B.1.1
$1$
\( 2^{6} \cdot 3^{3} \)
$1$
$5.367489134$
3.286902394
\( \frac{4102915888729}{9000000} \)
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -6671 a - 16341\) , \( 462144 a + 1132017\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-6671a-16341\right){x}+462144a+1132017$
150.1-e9
150.1-e
$12$
$24$
\(\Q(\sqrt{6}) \)
$2$
$[2, 0]$
150.1
\( 2 \cdot 3 \cdot 5^{2} \)
\( 2^{12} \cdot 3^{4} \cdot 5^{12} \)
$1.53203$
$(-a+2), (a+3), (-a-1), (-a+1)$
$1$
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$2, 3$
2Cs , 3B.1.2
$1$
\( 2^{5} \)
$1.881279636$
$1.248395236$
1.917607978
\( \frac{4102915888729}{9000000} \)
\( \bigl[1\) , \( 0\) , \( 1\) , \( -334\) , \( -2368\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}-334{x}-2368$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.