Properties

Label 6.6.1767625.1-36.1-c1
Base field 6.6.1767625.1
Conductor norm \( 36 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1767625.1

Generator \(a\), with minimal polynomial \( x^{6} - 7 x^{4} - x^{3} + 11 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 11, -1, -7, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 11, -1, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 11, -1, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-2a^{3}+\frac{3}{2}a^{2}+\frac{1}{2}\right){x}{y}+\left(a^{5}-7a^{3}+11a-2\right){y}={x}^{3}+\left(-a^{5}+6a^{3}+2a^{2}-6a-2\right){x}^{2}+\left(-3685a^{5}+6122a^{4}+15663a^{3}-22286a^{2}-3589a+2210\right){x}+\frac{502583}{2}a^{5}-\frac{833779}{2}a^{4}-1066837a^{3}+\frac{3037731}{2}a^{2}+242726a-\frac{302659}{2}\)
sage: E = EllipticCurve([K([1/2,0,3/2,-2,-1/2,1/2]),K([-2,-6,2,6,0,-1]),K([-2,11,0,-7,0,1]),K([2210,-3589,-22286,15663,6122,-3685]),K([-302659/2,242726,3037731/2,-1066837,-833779/2,502583/2])])
 
gp: E = ellinit([Polrev([1/2,0,3/2,-2,-1/2,1/2]),Polrev([-2,-6,2,6,0,-1]),Polrev([-2,11,0,-7,0,1]),Polrev([2210,-3589,-22286,15663,6122,-3685]),Polrev([-302659/2,242726,3037731/2,-1066837,-833779/2,502583/2])], K);
 
magma: E := EllipticCurve([K![1/2,0,3/2,-2,-1/2,1/2],K![-2,-6,2,6,0,-1],K![-2,11,0,-7,0,1],K![2210,-3589,-22286,15663,6122,-3685],K![-302659/2,242726,3037731/2,-1066837,-833779/2,502583/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+a^4+12a^3-2a^2-15a)\) = \((a+1)\cdot(1/2a^5-1/2a^4-2a^3+3/2a^2-3/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 36 \) = \(4\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^5+a^4+5a^3-2a^2-3a-2)\) = \((a+1)\cdot(1/2a^5-1/2a^4-2a^3+3/2a^2-3/2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -324 \) = \(-4\cdot9^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{24440219738032611356663}{36} a^{5} - \frac{40561631579796278917201}{36} a^{4} - \frac{51882193713025061416439}{18} a^{3} + \frac{147769887187775885902283}{36} a^{2} + \frac{5899906308447709939721}{9} a - \frac{1636259899263628386437}{4} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(13 a^{5} - 15 a^{4} - 57 a^{3} + 57 a^{2} + 22 a - 1 : -31 a^{5} + 6 a^{4} + 119 a^{3} - 58 a^{2} - 49 a - 2 : 1\right)$
Height \(0.15059167830814870066176330447486379170\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{93}{8} a^{5} - \frac{163}{8} a^{4} - \frac{97}{2} a^{3} + \frac{597}{8} a^{2} + \frac{31}{4} a - \frac{87}{8} : -22 a^{5} + \frac{293}{8} a^{4} + \frac{759}{8} a^{3} - \frac{1069}{8} a^{2} - \frac{207}{8} a + \frac{123}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.15059167830814870066176330447486379170 \)
Period: \( 587.78079242422115000937139977926595672 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.19567 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+1)\) \(4\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((1/2a^5-1/2a^4-2a^3+3/2a^2-3/2)\) \(9\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 36.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.