Properties

Label 6.6.1081856.1-25.1-a1
Base field 6.6.1081856.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1081856.1

Generator \(a\), with minimal polynomial \( x^{6} - 6 x^{4} - 2 x^{3} + 7 x^{2} + 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 2, 7, -2, -6, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 2, 7, -2, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 2, 7, -2, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-5a^{2}-a+4\right){x}{y}+\left(2a^{5}-2a^{4}-10a^{3}+5a^{2}+10a-2\right){y}={x}^{3}+\left(-a^{3}+a^{2}+2a-2\right){x}^{2}+\left(-20a^{5}+25a^{4}+85a^{3}-65a^{2}-48a+15\right){x}-57a^{5}+79a^{4}+232a^{3}-211a^{2}-108a+40\)
sage: E = EllipticCurve([K([4,-1,-5,0,1,0]),K([-2,2,1,-1,0,0]),K([-2,10,5,-10,-2,2]),K([15,-48,-65,85,25,-20]),K([40,-108,-211,232,79,-57])])
 
gp: E = ellinit([Polrev([4,-1,-5,0,1,0]),Polrev([-2,2,1,-1,0,0]),Polrev([-2,10,5,-10,-2,2]),Polrev([15,-48,-65,85,25,-20]),Polrev([40,-108,-211,232,79,-57])], K);
 
magma: E := EllipticCurve([K![4,-1,-5,0,1,0],K![-2,2,1,-1,0,0],K![-2,10,5,-10,-2,2],K![15,-48,-65,85,25,-20],K![40,-108,-211,232,79,-57]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+5a^3+3a^2-4a-1)\) = \((-a^5+5a^3+3a^2-4a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^5-a^4-17a^3-a^2+18a-1)\) = \((-a^5+5a^3+3a^2-4a-1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 625 \) = \(25^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{13234177536}{25} a^{5} + \frac{23027347904}{25} a^{4} + \frac{39338336256}{25} a^{3} - \frac{41983480576}{25} a^{2} - \frac{19581655424}{25} a + \frac{1520871744}{5} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{5} + 2 a^{4} + 4 a^{3} - 6 a^{2} - 2 a + 2 : -a^{5} + a^{4} + 5 a^{3} - 3 a^{2} - 5 a + 1 : 1\right)$
Height \(0.17220599322210926160110423242076373232\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{5} + \frac{3}{2} a^{4} + 4 a^{3} - \frac{9}{2} a^{2} - 2 a + 1 : -\frac{5}{4} a^{5} + \frac{3}{2} a^{4} + \frac{25}{4} a^{3} - \frac{15}{4} a^{2} - 6 a + 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.17220599322210926160110423242076373232 \)
Period: \( 5453.7797117806048225805228823441435660 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.70883 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+5a^3+3a^2-4a-1)\) \(25\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 25.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.