Properties

Label 4.4.5125.1-29.2-b1
Base field 4.4.5125.1
Conductor norm \( 29 \)
CM no
Base change no
Q-curve no
Torsion order \( 7 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.5125.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 6 x^{2} + 7 x + 11 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([11, 7, -6, -2, 1]))
 
gp: K = nfinit(Polrev([11, 7, -6, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11, 7, -6, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a^{3}-4a-3\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-1\right){x}^{2}+\left(2a^{3}-a^{2}-11a-6\right){x}-5a^{3}-a^{2}+27a+24\)
sage: E = EllipticCurve([K([-3,-1,1,0]),K([-1,4,1,-1]),K([-3,-4,0,1]),K([-6,-11,-1,2]),K([24,27,-1,-5])])
 
gp: E = ellinit([Polrev([-3,-1,1,0]),Polrev([-1,4,1,-1]),Polrev([-3,-4,0,1]),Polrev([-6,-11,-1,2]),Polrev([24,27,-1,-5])], K);
 
magma: E := EllipticCurve([K![-3,-1,1,0],K![-1,4,1,-1],K![-3,-4,0,1],K![-6,-11,-1,2],K![24,27,-1,-5]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-6)\) = \((a^2-6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29 \) = \(29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^2+6)\) = \((a^2-6)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -29 \) = \(-29\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1067314607}{29} a^{3} + \frac{3332543358}{29} a^{2} + \frac{2663592680}{29} a - \frac{10460703482}{29} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(3 a^{3} + a^{2} - 11 a - 8 : -19 a^{3} - 12 a^{2} + 78 a + 76 : 1\right)$
Height \(1.0564921736987555085339533618724890451\)
Torsion structure: \(\Z/7\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(1 : -a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.0564921736987555085339533618724890451 \)
Period: \( 1661.6009127185170497158988810560693162 \)
Tamagawa product: \( 1 \)
Torsion order: \(7\)
Leading coefficient: \( 2.00175067095063 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-6)\) \(29\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 29.2-b consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.