Properties

Label 4.4.2000.1-79.1-a2
Base field \(\Q(\zeta_{20})^+\)
Conductor norm \( 79 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\zeta_{20})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - 5 x^{2} + 5 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([5, 0, -5, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([5, 0, -5, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-3a-2\right){x}{y}+\left(a^{3}+a^{2}-3a-3\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(6a^{2}+3a-15\right){x}-6a^{3}-2a^{2}+14a-7\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([-2,-3,1,1]),K([2,0,-1,0]),K([-3,-3,1,1]),K([-15,3,6,0]),K([-7,14,-2,-6])])
 
Copy content gp:E = ellinit([Polrev([-2,-3,1,1]),Polrev([2,0,-1,0]),Polrev([-3,-3,1,1]),Polrev([-15,3,6,0]),Polrev([-7,14,-2,-6])], K);
 
Copy content magma:E := EllipticCurve([K![-2,-3,1,1],K![2,0,-1,0],K![-3,-3,1,1],K![-15,3,6,0],K![-7,14,-2,-6]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(a^{2} + \frac{1}{2} a - 3 : -\frac{1}{4} a^{3} - a^{2} + \frac{9}{4} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((a^3-2a^2-2a+6)\) = \((a^3-2a^2-2a+6)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 79 \) = \(79\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-7a^3-3a^2+21a+13$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-7a^3-3a^2+21a+13)\) = \((a^3-2a^2-2a+6)^{2}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 6241 \) = \(79^{2}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{613406825313792}{6241} a^{3} - \frac{721103039411200}{6241} a^{2} - \frac{2219326741908480}{6241} a + \frac{2608975307898560}{6241} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 111.23485270443218762526394571668095773 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.24364346057143 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.243643461 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 111.234853 \cdot 1 \cdot 2 } { {2^2 \cdot 44.721360} } \\ & \approx 1.243643461 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a^3-2a^2-2a+6)\) \(79\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 79.1-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.